텐서10 [다양체,텐서]1.2 Differentiable Maps, Diffeomorphism 수학에서는 한 종류의 space 개념이 소개되면, 그 다음에는 항상 그 종류의 space들 사이의 함수를 살펴보고 특별한 특성을 가진 작업을 한다. Differentiable manifold가 Euclidean space 사이의 함수의 미분을 일반적인 space로 확장하기 위한 것이므로 여기에서는 differentiable manifold 사이의 함수에 대한 미분 가능성을 살펴본다. Differentiable Map DEFINITION Differentiable Map \(m\)-dimensional differentiable manifold \(M\)과 \(n\)-dimensional differentiable manifold \(N\)에 대하여, 함수 \(f:M\to N\)이 $$ \psi ^{-1}.. 2018. 8. 7. [다양체,텐서] 1.1 Differentiable Manifolds Newton 역학에서 다루는 천체의 운동, 고전 전자기학에서 등장하는 전기장과 자기장의 변화 등은 미적분학에서 배운 Euclidean space, 특히 3차원 Euclidean space \(\mathbb{R}^3\) 벡터의 미분과 적분으로 표현된다. 예를 들어, 사람이 비스듬하게 공을 던졌을 때, 시간\(t\)에 대한 공의 위치를 \(\vec{r}(t)\)라고 하면, newton의 방정식 $$ \vec{F}_{\text{gravity}}=m\vec{g}=m\frac{d^2\vec{r}}{dt^2} ~~,~~ \vec{r}(t_0) = \vec{r}_0 ~~,~~ \frac{d\vec{r}}{dt}(t_0)= \vec{v}_0 $$ 와 같이 표현된다. 이렇게 물리적 현상이 벡터의 미분과 적분으로 표현 가.. 2018. 8. 6. 이전 1 2 다음