본문 바로가기

ideal gas4

[통계역학] 2.3 보존 이상기체 Boson Ideal Gas 지난 페이지에 이어 보존 이상기체의 특징에 대하여 살펴본다. 이번 페이지에 사용될 보존 이상기체 식들을 다시 소개한다.\[ \begin{equation} \frac{P}{kT} = \frac{1}{\lambda^3} g_{5/2}(z) - \frac{1}{V}\ln{(1-z)} \label{pvkt3} \end{equation} \]\[ \begin{equation} \frac{N}{V} = \frac{1}{\lambda^3} g_{3/2}(z) + \frac{1}{V}\frac{z}{1-z} \label{n2} \end{equation} \]\[ \begin{equation} \lambda = \left( \frac{h^2 \beta}{2\pi m } \right)^{\frac{1}{2}} = \lef.. 2020. 12. 16.
[통계역학] 2.1-(1) 보존 기체, 페르미온 기체의 대정준 앙상블 Grand Canonical Ensembles of Boson Gas, Fermion Gases 이전 페이지에서는 microcanonical ensemble을 이용하여 보존 기체와 페르미온 기체의 mean occupation number를 정의했다. 이번 페이지에서는 grand canonical ensemble을 이용하여 보존 기체와 페르미온 기체의 mean occupation number를 구해본다. 결론부터 말하자면 microcanonical ensemble에서 구한 결과와 동일하다. #Grand Partition Function1.5 대정준 앙상블 Grand Canonical Ensemble에서 grand canonical ensemble과 열역학적 변수들을 연결하는 핵심 개념은 grand partition function임을 살펴보았다.\[ \begin{equation} \mathcal{Z}.. 2020. 8. 18.
[통계역학] 1.4-(2) Example: 이상기체 Ideal Gas 이번 페이지에서는 이상기체에서 canonical ensemble를 이용하여 열역학적 결과들을 살펴보자. #Ideal Gas부피 \(V\), 기체입자의 개수 \(N\), 온도 \(T\) 로 고정된 이상기체를 생각해보자. 이상기체의 Hamiltonian은\[ H(\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N, \mathbf{p}_1, \mathbf{p}_2, \cdots, \mathbf{p}_N) = \sum_{i=1} ^N \frac{\left| \mathbf{p}_i \right|^2}{2m} \]이므로 partition function은\[ \begin{align*} Z_N(V,T) &= \frac{1}{N!h^{3N}} \int e^{-\beta H(\math.. 2020. 8. 7.
[통계역학] 1.1-(1) Example: 이상 기체, 기브스 역설 Ideal Gas, Gibbs Paradox 이번 페이지에서는 이상 기체에서 microstate 개수를 구하고 이를 이용하여 열역학의 몇몇 결과들을 도출해보자. #Microstate Multiplicity of Ideal Gas한 변의 길이가 \(L\)인 정육면체 상자에 입자간 상호작용이 없는 단일원자 \(N\) 개의 기체가 총 에너지 \(E\) 를 가지고 있다고 하자. i번째 입자에 허용된 에너지 레벨은\[ \varepsilon_i = \frac{\hbar^2 \pi^2}{2mL^2} (n_{i,x} ^2 + n_{i,y} ^2 + n_{i,z} ^2) ~~~~~~ \text{where } n_{i,x}, n_{i,y}, n_{i,z} = 1,2,\cdots \]이므로 \(L=V^{1/3}\)을 이용하면,\[ n_{i,x} ^2+ n_{i,y} .. 2020. 7. 28.